
datreant.data Documentation
Release 0.6.0

David Dotson

March 30, 2016

User Documentation

1 Getting datreant.data 3

2 Contributing 5

i

ii

datreant.data Documentation, Release 0.6.0

This datreant submodule adds a convenience interface for numpy and pandas data storage and retrieval using HDF5
within a Treant’s directory structure. It provides the data limb for Treants, Trees, Bundles, and Views from datre-
ant.core.

Warning: This module is experimental. It is not API stable, and has many rough edges and limitations. It is,
however, usable.

User Documentation 1

http://datreant.org/
http://www.numpy.org/
http://pandas.pydata.org/
https://www.hdfgroup.org/HDF5/whatishdf5.html
http://datreant.readthedocs.org/en/latest/
http://datreant.readthedocs.org/en/latest/

datreant.data Documentation, Release 0.6.0

2 User Documentation

CHAPTER 1

Getting datreant.data

See the installation instructions for installation details. The package itself is pure Python, but it is dependent on HDF5
libraries and the Python interfaces to these.

If you want to work on the code, either for yourself or to contribute back to the project, clone the repository to your
local machine with:

git clone https://github.com/datreant/datreant.git

3

https://www.hdfgroup.org/HDF5/whatishdf5.html

datreant.data Documentation, Release 0.6.0

4 Chapter 1. Getting datreant.data

CHAPTER 2

Contributing

This project is still under heavy development, and there are certainly rough edges and bugs. Issues and pull requests
welcome! Check out our contributor’s guide to learn how to get started with contributing back.

2.1 Installing datreant.data

Since datreant.data uses HDF5 as the file format of choice for persistence, you will first need to install the HDF5
libraries either using your package manager or manually.

On Ubuntu 14.04 this will be

apt-get install libhdf5-serial-1.8.4 libhdf5-serial-dev

and on Arch Linux

pacman -S hdf5

You can then install datreant.data from PyPI using pip:

pip install datreant.data

It is also possible to use --user to install into your user’s site-packages directory:

pip install --user datreant.data

2.1.1 Dependencies

The dependencies of datreant.data are:

• pandas: 0.16.1 or higher

• PyTables: 3.2.0 or higher

• h5py: 2.5.0 or higher

These are installed automatically when installing with pip.

5

http://datreant.readthedocs.org/en/latest/contributing.html
https://pypi.python.org/
http://pandas.pydata.org/
http://www.pytables.org/
http://www.h5py.org/

datreant.data Documentation, Release 0.6.0

2.1.2 Installing from source

To install from source, clone the repository and switch to the master branch

git clone git@github.com:datreant/datreant.data.git
cd datreant.data
git checkout master

Installation of the packages is as simple as

pip install .

This installs datreant.data in the system wide python directory; this may require administrative privileges.

It is also possible to use --user to install into your user’s site-packages directory:

pip install --user .

2.2 Storing and retrieving datasets within Treants

The functionality of a Treant can be expanded to conveniently store numpy and pandas objects in a couple
different ways. If we have an existing Treant:

>>> import datreant.core as dtr
>>> s = dtr.Treant('sequoia')
>>> s
<Treant: 'sequoia'>

We can attach the Data limb to only this instance with:

>>> import datreant.data
>>> s.attach('data')
>>> s.data
<Data([])>

Alternatively, we could attach the Data and AggData limbs to every object they apply for by doing:

>>> import datreant.data.attach

If you want explicit control of which objects have this limb, the first approach is the one to use, but the second one is
useful for interactive work.

2.2.1 Storing and retrieving numpy arrays

Perhaps we have generated a numpy array of dimension (10^6, 3) that we wish to have easy access to later

>>> import numpy as np
>>> a = np.random.randn(1000000, 3)
>>> a.shape
(1000000, 3)

We can store this easily

>>> s.data['something wicked'] = a
>>> s.data
<Data(['something wicked'])>

6 Chapter 2. Contributing

http://datreant.readthedocs.org/en/master/api_treants.html#datreant.core.Treant
http://www.numpy.org/

datreant.data Documentation, Release 0.6.0

Looking at the contents of the directory sequoia, we see it has a new subdirectory corresponding to the name of our
stored dataset

>>> s.draw()
sequoia/
+-- something wicked/
| +-- npData.h5
+-- Treant.608f7463-5063-450a-96eb-c5c93f16dc32.json

and inside of this is a new HDF5 file (npData.h5). Our numpy array is stored inside, and we can recall it just as
easily as we stored it:

>>> s.data['something wicked']
array([[0.49884872, -0.30062622, 0.64513512],

[-0.12839311, 0.68467086, -0.96125085],
[0.36655902, -0.13178154, -0.58137863],
...,
[-0.20229488, -0.30303892, 1.44345568],
[0.10119334, -0.50691484, 0.05854653],
[-2.0551924 , 0.80378532, -0.28869459]])

2.2.2 Storing and retrieving pandas objects

pandas is the de facto standard for working with tabular data in Python. It’s most-used objects, the Series and
DataFrame are just as easily stored as numpy arrays. If we have a DataFrame we wish to store:

>>> import pandas as pd
>>> df = pd.DataFrame(np.random.randn(1000, 3), columns=['A', 'B', 'C'])
>>> df.head()

A B C
0 -0.474337 -1.257253 0.497824
1 -1.057806 -1.393081 0.628394
2 0.063369 -1.820173 -1.178128
3 -0.747949 0.607452 -1.509302
4 -0.031547 -0.680997 1.127573

then as you can expect, we can store it with:

>>> s.data['something terrible'] = df

and recall it with:

>>> s.data['something terrible'].head()
A B C

0 -0.474337 -1.257253 0.497824
1 -1.057806 -1.393081 0.628394
2 0.063369 -1.820173 -1.178128
3 -0.747949 0.607452 -1.509302
4 -0.031547 -0.680997 1.127573

Our data is stored in its own HDF5 file (pdData.h5) in the subdirectory we specified, so now our Treant looks like
this:

s.draw()
sequoia/
+-- something wicked/
| +-- npData.h5
+-- Treant.608f7463-5063-450a-96eb-c5c93f16dc32.json

2.2. Storing and retrieving datasets within Treants 7

http://pandas.pydata.org/
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.html#pandas.Series
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html#pandas.DataFrame

datreant.data Documentation, Release 0.6.0

+-- something terrible/
+-- pdData.h5

Alternatively, we can use the add() method to store datasets:

>>> s.data.add('something terrible')

but the effect is the same. Since internally this uses the pandas.HDFStore class for storing pandas objects, all limita-
tions for the types of indexes and objects it can store apply.

Appending to existing data

Sometimes we may have code that will generate a Series or DataFrame that is rather large, perhaps larger than
our machine’s memory. In these cases we can append() to an existing store instead of writing out a single, huge
DataFrame all at once:

>>> s.data['something terrible'].shape # before
(1000, 3)

>>> df2 = pd.DataFrame(np.random.randn(2000, 3), columns=['A', 'B', 'C'])
>>> s.data.append('something terrible', df2)
>>> s.data['something terrible'].shape # after
(3000, 3)

Have code that will generate a DataFrame with 10^8 rows? No problem:

>>> for i in range(10**2):
... a_piece = pd.DataFrame(np.random.randn(10**6, 3),
... columns=['A', 'B', 'C'],
... index=pd.Int64Index(np.arange(10**6) + i*10**6))
...
... s.data.append('something enormous', a_piece)

Note that the DataFrame appended must have the same column names and dtypes as that already stored, and that
only rows can be appended, not columns. For pandas.Series objects the dtype must match. Appending of
pandas.Panel objects also works, but the limitations are more stringent. See the pandas HDFStore documentation
for more details on what is technically possible.

Retrieving subselections

For pandas stores that are very large, we may not want or be able to pull the full object into memory. For these cases
we can use retrieve() to get subselections of our data. Taking our large 10^8 row DataFrame, we can get at rows
1000000 to 2000000 with something like:

>>> s.data.retrieve('something enormous', start=10000000, stop=2000000).shape
(1000000, 3)

If we only wanted columns ‘B’ and ‘C’, we could get only those, too:

>>> s.data.retrieve('something enormous', start=10000000, stop=2000000,
... columns=['B', 'C']).shape
(1000000, 2)

These operations are performed “out-of-core”, meaning that the full dataset is never read entirely into memory to get
back the result of our subselection.

8 Chapter 2. Contributing

http://pandas.pydata.org/pandas-docs/stable/api.html#hdfstore-pytables-hdf5
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.html#pandas.Series
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html#pandas.DataFrame
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html#pandas.DataFrame
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.html#pandas.Series
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Panel.html#pandas.Panel
http://pandas.pydata.org/pandas-docs/stable/io.html#hdf5-pytables

datreant.data Documentation, Release 0.6.0

Retrieving from a query

For large datasets it can also be useful to retrieve only rows that match some set of conditions. We can do this with the
where keyword, for example getting all rows for which column ‘A’ is less than -2:

>>> s.data.retrieve('something enormous', where="A < -2").head()
A B C

131 -2.177729 -0.797003 0.401288
134 -2.017321 0.750593 -1.366106
198 -2.203170 -0.670188 0.494191
246 -2.156695 1.107288 -0.065875
309 -2.334792 0.984636 0.006232
321 -3.784861 -1.222399 0.038717
346 -2.057103 -0.230953 0.732774
364 -2.418875 0.250880 -0.850418
413 -2.528563 -0.261624 1.233367
480 -2.205484 0.036570 0.501868

Note: Since our data is randomly generated in this example, the rows you get running the same example will be
different.

Or perhaps when both column ‘A’ is less than -2 and column ‘C’ is greater than 2:

>>> s.data.retrieve('something enormous', where="A < -2 & C > 2").head()
A B C

1790 -3.103821 -0.616780 2.714530
5635 -2.431589 -0.580400 3.163408
7664 -2.364559 0.304764 2.884965
9208 -2.569256 1.105211 2.008396
9487 -2.028096 0.146484 2.234081
9968 -2.362063 0.544276 2.469602
11503 -2.494900 -0.005465 2.487311
12725 -2.353478 -0.001569 2.274861
14991 -2.129492 -1.889708 2.324640
15178 -2.327528 1.852786 2.425977

See the documentation for querying with pandas.HDFStore.select() for more information on the range of
possibilities for the where keyword.

2.2.3 Bonus: storing anything pickleable

As a bit of a bonus, we can use the same basic storage and retrieval mechanisms that work for numpy and pandas
objects to store Python object that is pickleable. For example, doing:

>>> s.data['a grocery list'] = ['ham', 'eggs', 'spam']

will store this list as a pickle:

>>> s.draw()
sequoia/
+-- a grocery list/
| +-- pyData.pkl
+-- something wicked/
| +-- npData.h5
+-- Treant.608f7463-5063-450a-96eb-c5c93f16dc32.json
+-- something enormous/

2.2. Storing and retrieving datasets within Treants 9

http://pandas.pydata.org/pandas-docs/stable/io.html#querying-a-table
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.HDFStore.select.html#pandas.HDFStore.select
http://pandas.pydata.org/pandas-docs/stable/index.html#module-pandas

datreant.data Documentation, Release 0.6.0

| +-- pdData.h5
+-- something terrible/

+-- pdData.h5

And we can get it back:

>>> s.data['a grocery list']
['ham', 'eggs', 'spam']

In this way we don’t have to care too much about what type of object we are trying to store; the Data limb will try to
pickle anything that isn’t a numpy or pandas object.

2.2.4 Deleting datasets

We can delete stored datasets with the remove() method:

>>> s.data.remove('something terrible')
>>> s.draw()
sequoia/
+-- a grocery list/
| +-- pyData.pkl
+-- Treant.608f7463-5063-450a-96eb-c5c93f16dc32.json
+-- something enormous/
| +-- pdData.h5
+-- something wicked/

+-- npData.h5

This will remove not only the file in which the data is actually stored, but also the directory if there are no other files
present inside of it. If there are other files present, the data file will be deleted but the directory will not.

But since datasets live in the filesystem, we can also delete datasets by deleting them more directly, e.g. through a
shell:

> rm -r sequoia/"something terrible"

and it will work just as well.

2.2.5 API reference: Data

See the Data API reference for more details.

2.3 Using Trees to subselect datasets

The Data limb isn’t just for Treants; it works for Tree objects as well. So we could use our Treant ‘sequoia’ directly
as a Tree instead of a Treant if we wanted:

>>> import datreant.core as dtr
>>> import datreant.data
>>> t = dtr.Tree('sequoia/')
>>> t.attach('data')
>>> t.data
<Data(['a grocery list', 'something enormous', 'something wicked'])>

and it would work all the same. This behavior is most useful, however, when nesting datasets.

10 Chapter 2. Contributing

http://pandas.pydata.org/pandas-docs/stable/index.html#module-pandas
http://datreant.readthedocs.org/en/master/api_filesystem.html#datreant.core.Tree

datreant.data Documentation, Release 0.6.0

2.3.1 Nesting within a tree

Dataset names are their paths downward relative to the Tree/Treant they are called from, so we can store a dataset like:

>>> t.data['a/better/grocery/list'] = ['ham', 'eggs', 'steak']
>>> t.data
<Data(['a grocery list', 'a/better/grocery/list', 'something enormous', 'something wicked'])>

and this creates the directory structure you might expect:

>>> t.draw()
sequoia/
+-- a grocery list/
| +-- pyData.pkl
+-- Treant.608f7463-5063-450a-96eb-c5c93f16dc32.json
+-- something enormous/
| +-- pdData.h5
+-- a/
| +-- better/
| +-- grocery/
| +-- list/
| +-- pyData.pkl
+-- something wicked/

+-- npData.h5

This allows us to group together related datasets in a natural way, as we would probably do even if we weren’t using
datreant objects. So if we had several shopping lists, we might put them under a directory of their own:

>>> t.data['shopping lists/food'] = ['milk', 'ham', 'eggs', 'steak']
>>> t.data['shopping lists/clothes'] = ['shirts', 'pants', 'shoes']
>>> t.data['shopping lists/misc'] = ['dish soap']

which would give us:

>>> t['shopping lists'].draw()
shopping lists/
+-- misc/
| +-- pyData.pkl
+-- food/
| +-- pyData.pkl
+-- clothes/

+-- pyData.pkl

and we could always get them back easily enough:

>>> t.data['shopping lists/food']
['milk', 'ham', 'eggs', 'steak']

2.3.2 Trees as subselections

But since Trees can access datasets inside them, we could work more directly with our shopping lists by using the
‘shopping lists’ Tree

>>> lets_go_shopping = t['shopping lists']
>>> lets_go_shopping.data
<Data(['clothes', 'food', 'misc'])>

and now selecting is a bit less verbose:

2.3. Using Trees to subselect datasets 11

datreant.data Documentation, Release 0.6.0

>>> lets_go_shopping['food']
['milk', 'ham', 'eggs', 'steak']

2.4 Aggregating datasets with Views and Bundles

Just as Treants and Trees have the Data limb for storing and retrieving datasets in their filesystem trees, the View
and Bundle objects also have the AggData limb for accessing these datasets in aggregate.

Given a directory with four Treants

> ls
elm/ maple/ oak/ sequoia/

we’ll gather these up in a Bundle

>>> import datreant.core as dtr
>>> import glob
>>> b = dtr.Bundle(glob.glob('*'))
>>> b
<Bundle([<Treant: 'sequoia'>, <Treant: 'maple'>, <Treant: 'oak'>, <Treant: 'elm'>])>

and then attach the AggData limb to only this Bundle instance with:

>>> import datreant.data
>>> b.attach('data')

Note: Attaching a limb like AggData to a Bundle or View with the attach() method will attach the required limb
to each member instance. In this case, each member gets a Data limb.

and so we can now do:

>>> b.data
<AggData([])>

This tells us that there are no datasets with the same key within every member of the Bundle. So, let’s make something
that does. Let’s build a “dataset” that gives us a sinusoid based on a characteristic of each Treant in the Bundle:

>>> import numpy as np
>>> b.categories['frequency'] = [1, 2, 3, 4]
>>> for member in b:
... member.data['sinusoid/array'] = np.sin(
... member.categories['frequency'] * np.linspace(0, 8*np.pi,
... num=200))

So now if we do:

>>> b.data
<AggData(['sinusoid/array'])>

we see we now have a dataset name in common among all members. If we recall it

>>> sines = b.data['sinusoid/array']
>>> type(sines)
dict

we get back a dictionary with the full path to each member as keys:

12 Chapter 2. Contributing

http://datreant.readthedocs.org/en/master/api_filesystem.html#datreant.core.View
http://datreant.readthedocs.org/en/master/api_bundle.html#datreant.core.Bundle
http://datreant.readthedocs.org/en/master/api_bundle.html#datreant.core.Bundle.attach

datreant.data Documentation, Release 0.6.0

>>> sines.keys()
['/home/bob/research/arborea/sequoia/',
'/home/bob/research/arborea/oak/',
'/home/bob/research/arborea/elm/',
'/home/bob/research/arborea/maple/']

and the values are the :numpy arrays we stored for each member. If we’d rather get back a dictionary with names
instead of paths, we could do that with the retrieve() method:

>>> b.data.retrieve('sinusoid/array', by='name').keys()
['sequoia', 'oak', 'maple', 'elm']

Getting uuids as the keys is also possible, and is often useful since these will be unique among Treants, while names
(and in some cases, paths) are generally not.

2.4.1 Aggregating datasets not represented among all members

We can still aggregate over datasets even if their keys are not present among all members. We can see what keys are
available among at least one member in the Bundle with:

>>> b.data.any
['a grocery list',
'a/better/grocery/list',
'shopping lists/clothes',
'shopping lists/food',
'shopping lists/misc',
'sinusoid/array',
'something enormous',
'something wicked']

and we see the datasets we stored using the single Treant earlier. If we recall one of these, we get an aggregation

>>> b.data['shopping lists/clothes']
{'/home/bob/research/arborea/sequoia/': ['shirts', 'pants', 'shoes']}

with only the datasets present for that key. Since it’s only the one Treant that has a dataset with this name, we get a
dictionary with one key-value pair.

2.4.2 MultiIndex aggregation for pandas objects

numpy arrays or pickled datasets are always retrieved in aggregate as dictionaries, since this is the simplest way of
aggregating these objects while retaining the ability to identify datasets from individual members. Aggregation is most
useful, however, for pandas objects, since for these we can naturally build versions of the same data structure with
an additional index for data membership.

We’ll make a pandas.Series version of the same dataset we stored before:

>>> import pandas as pd
>>> for member in b:
... member.data['sinusoid/series'] = pd.Series(member.data['sinusoid/array'])

So now when we retrieve this aggregated dataset by name, we get a series with an outermost index of member names:

>>> sines = b.data.retrieve('sinusoid/series', by='name')
>>> sines.groupby(level=0).head()
sequoia 0 0.000000

1 0.125960

2.4. Aggregating datasets with Views and Bundles 13

http://pandas.pydata.org/pandas-docs/stable/index.html#module-pandas
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.html#pandas.Series

datreant.data Documentation, Release 0.6.0

2 0.249913
3 0.369885
4 0.483966

oak 0 0.000000
1 0.369885
2 0.687304
3 0.907232
4 0.998474

maple 0 0.000000
1 0.249913
2 0.483966
3 0.687304
4 0.847024

elm 0 0.000000
1 0.483966
2 0.847024
3 0.998474
4 0.900479

dtype: float64

So we can immediately use this for aggregated analysis, or perhaps just pretty plots:

>>> for name, group in sines.groupby(level=0):
... group.reset_index(level=0, drop=True).plot(legend=True, label=name)

14 Chapter 2. Contributing

datreant.data Documentation, Release 0.6.0

2.4.3 Subselection with Views

Just as we can subselect datasets with Trees, we can use View objects to work with subselections in aggregate. Using
our Bundle from above, we can construct a View:

>>> sinusoids = dtr.View(b).trees['sinusoid']
>>> sinusoids
<View([<Tree: 'sequoia/sinusoid/'>, <Tree: 'maple/sinusoid/'>, <Tree: 'oak/sinusoid/'>, <Tree: 'elm/sinusoid/'>])>

And just like a Tree can access datasets with the Data limb in the same way a Treant can, a View can access
datasets in aggregate in the same way as a Bundle:

>>> sinusoids.attach('data')
>>> sinusoids.data
<AggData(['array', 'series'])>

These are the datasets common to all the Trees in this View. We can retrieve an aggregation as before:

>>> sinusoids.data['series'].groupby(level=0).head()
/home/bob/research/arborea/sequoia/sinusoid/ 0 0.000000

1 0.031569
2 0.063106
3 0.094580
4 0.125960

/home/bob/research/arborea/maple/sinusoid/ 0 0.000000
1 0.063106
2 0.125960
3 0.188312
4 0.249913

/home/bob/research/arborea/oak/sinusoid/ 0 0.000000
1 0.094580
2 0.188312
3 0.280355
4 0.369885

/home/bob/research/arborea/elm/sinusoid/ 0 0.000000
1 0.125960
2 0.249913
3 0.369885
4 0.483966

dtype: float64

Note: For aggregations from a View, it is not possible to aggregate by uuid because Trees do not have them. Also,
in many cases, as here, aggregating by name will not give unique keys. When the aggregation keys are not unique, a
KeyError is raised.

2.4.4 API reference: AggData

See the AggData API reference for more details.

2.5 API Reference

This is an overview of the datreant.data API components.

2.5. API Reference 15

http://datreant.readthedocs.org/en/master/api_filesystem.html#datreant.core.View
http://datreant.readthedocs.org/en/master/api_filesystem.html#datreant.core.Tree
http://datreant.readthedocs.org/en/master/api_treants.html#datreant.core.Treant
http://datreant.readthedocs.org/en/master/api_filesystem.html#datreant.core.View
http://datreant.readthedocs.org/en/master/api_bundle.html#datreant.core.Bundle

datreant.data Documentation, Release 0.6.0

2.5.1 Individual datasets

These are the API components of datreant.data for storing and retrieving datasets from individual Treants and
Trees.

Data

The class datreant.data.limbs.Data is the interface used by Treants to access their stored datasets.

class datreant.data.limbs.Data(tree)
Interface to stored data.

add(handle, *args, **kwargs)
Store data in Treant.

A data instance can be a pandas object (Series, DataFrame, Panel), a numpy array, or a pickleable python
object. If the dataset doesn’t exist, it is added. If a dataset already exists for the given handle, it is replaced.

Arguments

handle name given to data; needed for retrieval

data data structure to store

append(handle, *args, **kwargs)
Append rows to an existing dataset.

The object must be of the same pandas class (Series, DataFrame, Panel) as the existing dataset, and it must
have exactly the same columns (names included).

Arguments

handle name of data to append to

data data to append

keys()
List available datasets.

Returns

handles list of handles to available datasets

remove(handle, **kwargs)
Remove a dataset, or some subset of a dataset.

Note: in the case the whole dataset is removed, the directory containing the dataset file (Data.h5) will
NOT be removed if it still contains file(s) after the removal of the dataset file.

For pandas objects (Series, DataFrame, or Panel) subsets of the whole dataset can be removed using
keywords such as start and stop for ranges of rows, and columns for selected columns.

Arguments

handle name of dataset to delete

Keywords

where conditions for what rows/columns to remove

start row number to start selection

stop row number to stop selection

columns columns to remove

16 Chapter 2. Contributing

datreant.data Documentation, Release 0.6.0

retrieve(handle, *args, **kwargs)
Retrieve stored data.

The stored data structure is read from disk and returned.

If dataset doesn’t exist, None is returned.

For pandas objects (Series, DataFrame, or Panel) subsets of the whole dataset can be returned using key-
words such as start and stop for ranges of rows, and columns for selected columns.

Also for pandas objects, the where keyword takes a string as input and can be used to filter out rows
and columns without loading the full object into memory. For example, given a DataFrame with handle
‘mydata’ with columns (A, B, C, D), one could return all rows for columns A and C for which column D
is greater than .3 with:

retrieve('mydata', where='columns=[A,C] & D > .3')

Or, if we wanted all rows with index = 3 (there could be more than one):

retrieve('mydata', where='index = 3')

See pandas.HDFStore.select() for more information.

Arguments

handle name of data to retrieve

Keywords

where conditions for what rows/columns to return

start row number to start selection

stop row number to stop selection

columns list of columns to return; all columns returned by default

iterator if True, return an iterator [False]

chunksize number of rows to include in iteration; implies iterator=True

Returns

data stored data; None if nonexistent

2.5.2 Aggregated data

These are the API components of datreant.data for working with datasets from multiple Treants at once, and
treating them in aggregate.

AggData

The class datreant.data.agglimbs.AggData is the interface used by Bundles and Views to access their
members’ datasets in aggregate.

class datreant.data.agglimbs.AggData(collection)
Manipulators for collection data.

keys(scope=’all’)
List available datasets.

Parameters scope ({’all’, ’any’}) – Keys to list. ‘all’ returns only handles that are
present in all members. ‘any’ returns a list of all handles present in at least one member.

2.5. API Reference 17

http://pandas.pydata.org/pandas-docs/stable/generated/pandas.HDFStore.select.html#pandas.HDFStore.select

datreant.data Documentation, Release 0.6.0

Returns handles – list of handles to available datasets

Return type list

retrieve(handle, by=’path’, **kwargs)
Retrieve aggregated dataset from all members.

This is a convenience method. The stored data structure for each member is read from disk and aggregated.
The aggregation scheme is dependent on the form of the data structures pulled from each member:

pandas DataFrames or Series the structures are appended together, with a new level added to the index
giving the member (see by) each set of rows came from

pandas Panel or Panel4D, numpy arrays, pickled python objects the structures are returned as a dic-
tionary, with keys giving the member (see by) and each value giving the corresponding data structure

This method tries to do smart things with the data it reads from each member. In particular:

•members for which there is no data with the given handle are skipped

•the lowest-common-denominator data structure is output; this means that if all data structures read
are pandas DataFrames, then a multi-index DataFrame is returned; if some structures are pandas
DataFrames, while some are anything else, a dictionary is returned

Arguments

handle name of data to retrieve

Keywords

by top-level index of output data structure; ‘path’ uses member path, ‘name’ uses member
names, ‘uuid’ uses member uuids; if names are not unique, it is better to go with ‘path’ or
‘uuid’ [’path’]

See datreant.data.limbs.Data.retrieve() for more information on keyword usage.

Keywords for pandas data structures

where conditions for what rows/columns to return

start row number to start selection

stop row number to stop selection

columns list of columns to return; all columns returned by default

iterator if True, return an iterator [False]

chunksize number of rows to include in iteration; implies iterator=True

Returns

data aggregated data structure

18 Chapter 2. Contributing

Index

A
add() (datreant.data.limbs.Data method), 16
AggData (class in datreant.data.agglimbs), 17
append() (datreant.data.limbs.Data method), 16

D
Data (class in datreant.data.limbs), 16

K
keys() (datreant.data.agglimbs.AggData method), 17
keys() (datreant.data.limbs.Data method), 16

R
remove() (datreant.data.limbs.Data method), 16
retrieve() (datreant.data.agglimbs.AggData method), 18
retrieve() (datreant.data.limbs.Data method), 16

19

	Getting datreant.data
	Contributing

