

datreant.data: convenient data storage and retrieval for Treants

This datreant [http://datreant.org/] submodule adds a convenience interface for numpy [http://www.numpy.org/] and
pandas [http://pandas.pydata.org/] data storage and retrieval using HDF5 [https://www.hdfgroup.org/HDF5/whatishdf5.html] within a Treant’s directory
structure. It provides the data limb for Treants, Trees, Bundles, and Views
from datreant.core [http://datreant.readthedocs.org/en/latest/].

Warning

This module is experimental. It is not API stable, and has
many rough edges and limitations. It is, however, usable.

Getting datreant.data

See the installation instructions for installation details.
The package itself is pure Python, but it is dependent on HDF5 [https://www.hdfgroup.org/HDF5/whatishdf5.html] libraries
and the Python interfaces to these.

If you want to work on the code, either for yourself or to contribute back to
the project, clone the repository to your local machine with:

git clone https://github.com/datreant/datreant.git

Contributing

This project is still under heavy development, and there are certainly rough
edges and bugs. Issues and pull requests welcome! Check out our contributor’s guide [http://datreant.readthedocs.org/en/latest/contributing.html]
to learn how to get started with contributing back.

User Documentation

	Installing datreant.data

	Storing and retrieving datasets within Treants

	Using Trees to subselect datasets

	Aggregating datasets with Views and Bundles

	API Reference

Installing datreant.data

Since datreant.data uses HDF5 as the file format of choice for persistence,
you will first need to install the HDF5 libraries either using your package
manager or manually.

On Ubuntu 14.04 this will be

apt-get install libhdf5-serial-1.8.4 libhdf5-serial-dev

and on Arch Linux

pacman -S hdf5

You can then install datreant.data from PyPI [https://pypi.python.org/]
using pip:

pip install datreant.data

It is also possible to use --user to install into your user’s site-packages
directory:

pip install --user datreant.data

Dependencies

The dependencies of datreant.data are:

	pandas [http://pandas.pydata.org/]: 0.16.1 or higher

	PyTables [http://www.pytables.org/]: 3.2.0 or higher

	h5py [http://www.h5py.org/]: 2.5.0 or higher

These are installed automatically when installing with pip.

Installing from source

To install from source, clone the repository and switch to the master branch

git clone git@github.com:datreant/datreant.data.git
cd datreant.data
git checkout master

Installation of the packages is as simple as

pip install .

This installs datreant.data in the system wide python directory; this may
require administrative privileges.

It is also possible to use --user to install into your user’s site-packages
directory:

pip install --user .

Storing and retrieving datasets within Treants

The functionality of a Treant [http://datreant.readthedocs.io/en/master/api_treants.html#datreant.core.Treant] can be expanded to
conveniently store numpy and pandas objects in a couple different ways.
If we have an existing Treant:

>>> import datreant.core as dtr
>>> s = dtr.Treant('sequoia')
>>> s
<Treant: 'sequoia'>

We can attach the Data limb to only this instance
with:

>>> import datreant.data
>>> s.attach('data')
>>> s.data
<Data([])>

Alternatively, we could attach the Data and
AggData limbs to every object they apply for
by doing:

>>> import datreant.data.attach

If you want explicit control of which objects have this limb, the first
approach is the one to use, but the second one is useful for interactive work.

Storing and retrieving numpy arrays

Perhaps we have generated a numpy [http://www.numpy.org/] array of dimension
(10^6, 3) that we wish to have easy access to later

>>> import numpy as np
>>> a = np.random.randn(1000000, 3)
>>> a.shape
(1000000, 3)

We can store this easily

>>> s.data['something wicked'] = a
>>> s.data
<Data(['something wicked'])>

Looking at the contents of the directory sequoia, we see it has a new
subdirectory corresponding to the name of our stored dataset

>>> s.draw()
sequoia/
 +-- something wicked/
 | +-- npData.h5
 +-- Treant.608f7463-5063-450a-96eb-c5c93f16dc32.json

and inside of this is a new HDF5 file (npData.h5). Our numpy array is
stored inside, and we can recall it just as easily as we stored it:

>>> s.data['something wicked']
array([[0.49884872, -0.30062622, 0.64513512],
 [-0.12839311, 0.68467086, -0.96125085],
 [0.36655902, -0.13178154, -0.58137863],
 ...,
 [-0.20229488, -0.30303892, 1.44345568],
 [0.10119334, -0.50691484, 0.05854653],
 [-2.0551924 , 0.80378532, -0.28869459]])

Storing and retrieving pandas objects

pandas [http://pandas.pydata.org/] is the de facto standard for working
with tabular data in Python. It’s most-used objects, the
Series [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.html#pandas.Series] and DataFrame [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html#pandas.DataFrame] are just as easily
stored as numpy arrays. If we have a DataFrame we wish to store:

>>> import pandas as pd
>>> df = pd.DataFrame(np.random.randn(1000, 3), columns=['A', 'B', 'C'])
>>> df.head()
 A B C
0 -0.474337 -1.257253 0.497824
1 -1.057806 -1.393081 0.628394
2 0.063369 -1.820173 -1.178128
3 -0.747949 0.607452 -1.509302
4 -0.031547 -0.680997 1.127573

then as you can expect, we can store it with:

>>> s.data['something terrible'] = df

and recall it with:

>>> s.data['something terrible'].head()
 A B C
0 -0.474337 -1.257253 0.497824
1 -1.057806 -1.393081 0.628394
2 0.063369 -1.820173 -1.178128
3 -0.747949 0.607452 -1.509302
4 -0.031547 -0.680997 1.127573

Our data is stored in its own HDF5 file (pdData.h5) in the subdirectory we
specified, so now our Treant looks like this:

s.draw()
sequoia/
 +-- something wicked/
 | +-- npData.h5
 +-- Treant.608f7463-5063-450a-96eb-c5c93f16dc32.json
 +-- something terrible/
 +-- pdData.h5

Alternatively, we can use the add() method to
store datasets:

>>> s.data.add('something terrible')

but the effect is the same. Since internally this uses the pandas.HDFStore [http://pandas.pydata.org/pandas-docs/stable/api.html#hdfstore-pytables-hdf5]
class for storing pandas objects, all limitations for the types of indexes and
objects it can store apply.

Appending to existing data

Sometimes we may have code that will generate a Series [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.html#pandas.Series] or
DataFrame [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html#pandas.DataFrame] that is rather large, perhaps larger than our
machine’s memory. In these cases we can
append() to an existing store instead of writing
out a single, huge DataFrame all at once:

>>> s.data['something terrible'].shape # before
(1000, 3)

>>> df2 = pd.DataFrame(np.random.randn(2000, 3), columns=['A', 'B', 'C'])
>>> s.data.append('something terrible', df2)
>>> s.data['something terrible'].shape # after
(3000, 3)

Have code that will generate a DataFrame with 10^8 rows? No problem:

>>> for i in range(10**2):
... a_piece = pd.DataFrame(np.random.randn(10**6, 3),
... columns=['A', 'B', 'C'],
... index=pd.Int64Index(np.arange(10**6) + i*10**6))
...
... s.data.append('something enormous', a_piece)

Note that the DataFrame [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html#pandas.DataFrame] appended must have the same column
names and dtypes as that already stored, and that only rows can be appended,
not columns. For pandas.Series [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.html#pandas.Series] objects the dtype must match.
Appending of pandas.Panel [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Panel.html#pandas.Panel] objects also works, but the limitations are
more stringent. See the pandas HDFStore documentation [http://pandas.pydata.org/pandas-docs/stable/io.html#hdf5-pytables] for more details on
what is technically possible.

Retrieving subselections

For pandas stores that are very large, we may not want or be able to pull the
full object into memory. For these cases we can use
retrieve() to get subselections of our data.
Taking our large 10^8 row DataFrame, we can get at rows 1000000 to 2000000
with something like:

>>> s.data.retrieve('something enormous', start=10000000, stop=2000000).shape
(1000000, 3)

If we only wanted columns ‘B’ and ‘C’, we could get only those, too:

>>> s.data.retrieve('something enormous', start=10000000, stop=2000000,
... columns=['B', 'C']).shape
(1000000, 2)

These operations are performed “out-of-core”, meaning that the full dataset is
never read entirely into memory to get back the result of our subselection.

Retrieving from a query

For large datasets it can also be useful to retrieve only rows that match some
set of conditions. We can do this with the where keyword, for example
getting all rows for which column ‘A’ is less than -2:

>>> s.data.retrieve('something enormous', where="A < -2").head()
 A B C
131 -2.177729 -0.797003 0.401288
134 -2.017321 0.750593 -1.366106
198 -2.203170 -0.670188 0.494191
246 -2.156695 1.107288 -0.065875
309 -2.334792 0.984636 0.006232
321 -3.784861 -1.222399 0.038717
346 -2.057103 -0.230953 0.732774
364 -2.418875 0.250880 -0.850418
413 -2.528563 -0.261624 1.233367
480 -2.205484 0.036570 0.501868

Note

Since our data is randomly generated in this example, the rows you get running
the same example will be different.

Or perhaps when both column ‘A’ is less than -2 and column ‘C’ is greater than 2:

>>> s.data.retrieve('something enormous', where="A < -2 & C > 2").head()
 A B C
1790 -3.103821 -0.616780 2.714530
5635 -2.431589 -0.580400 3.163408
7664 -2.364559 0.304764 2.884965
9208 -2.569256 1.105211 2.008396
9487 -2.028096 0.146484 2.234081
9968 -2.362063 0.544276 2.469602
11503 -2.494900 -0.005465 2.487311
12725 -2.353478 -0.001569 2.274861
14991 -2.129492 -1.889708 2.324640
15178 -2.327528 1.852786 2.425977

See the documentation for querying [http://pandas.pydata.org/pandas-docs/stable/io.html#querying-a-table] with pandas.HDFStore.select() [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.HDFStore.select.html#pandas.HDFStore.select] for
more information on the range of possibilities for the where keyword.

Bonus: storing anything pickleable

As a bit of a bonus, we can use the same basic storage and retrieval mechanisms
that work for numpy and pandas [http://pandas.pydata.org/pandas-docs/stable/index.html#module-pandas] objects to store Python object
that is pickleable. For example, doing:

>>> s.data['a grocery list'] = ['ham', 'eggs', 'spam']

will store this list as a pickle:

>>> s.draw()
sequoia/
 +-- a grocery list/
 | +-- pyData.pkl
 +-- something wicked/
 | +-- npData.h5
 +-- Treant.608f7463-5063-450a-96eb-c5c93f16dc32.json
 +-- something enormous/
 | +-- pdData.h5
 +-- something terrible/
 +-- pdData.h5

And we can get it back:

>>> s.data['a grocery list']
['ham', 'eggs', 'spam']

In this way we don’t have to care too much about what type of object we are
trying to store; the Data limb will try to pickle
anything that isn’t a numpy or pandas [http://pandas.pydata.org/pandas-docs/stable/index.html#module-pandas] object.

Deleting datasets

We can delete stored datasets with the remove()
method:

>>> s.data.remove('something terrible')
>>> s.draw()
sequoia/
 +-- a grocery list/
 | +-- pyData.pkl
 +-- Treant.608f7463-5063-450a-96eb-c5c93f16dc32.json
 +-- something enormous/
 | +-- pdData.h5
 +-- something wicked/
 +-- npData.h5

This will remove not only the file in which the data is actually stored, but
also the directory if there are no other files present inside of it. If there
are other files present, the data file will be deleted but the directory will
not.

But since datasets live in the filesystem, we can also delete datasets by
deleting them more directly, e.g. through a shell:

> rm -r sequoia/"something terrible"

and it will work just as well.

API reference: Data

See the Data API reference for more details.

Using Trees to subselect datasets

The Data limb isn’t just for Treants; it works
for Tree [http://datreant.readthedocs.io/en/master/api_filesystem.html#datreant.core.Tree] objects as well. So we could use our
Treant ‘sequoia’ directly as a Tree instead of a Treant if we wanted:

>>> import datreant.core as dtr
>>> import datreant.data
>>> t = dtr.Tree('sequoia/')
>>> t.attach('data')
>>> t.data
<Data(['a grocery list', 'something enormous', 'something wicked'])>

and it would work all the same. This behavior is most useful, however, when
nesting datasets.

Nesting within a tree

Dataset names are their paths downward relative to the Tree/Treant they are
called from, so we can store a dataset like:

>>> t.data['a/better/grocery/list'] = ['ham', 'eggs', 'steak']
>>> t.data
<Data(['a grocery list', 'a/better/grocery/list', 'something enormous', 'something wicked'])>

and this creates the directory structure you might expect:

>>> t.draw()
sequoia/
 +-- a grocery list/
 | +-- pyData.pkl
 +-- Treant.608f7463-5063-450a-96eb-c5c93f16dc32.json
 +-- something enormous/
 | +-- pdData.h5
 +-- a/
 | +-- better/
 | +-- grocery/
 | +-- list/
 | +-- pyData.pkl
 +-- something wicked/
 +-- npData.h5

This allows us to group together related datasets in a natural way, as we would
probably do even if we weren’t using datreant objects. So if we had several
shopping lists, we might put them under a directory of their own:

>>> t.data['shopping lists/food'] = ['milk', 'ham', 'eggs', 'steak']
>>> t.data['shopping lists/clothes'] = ['shirts', 'pants', 'shoes']
>>> t.data['shopping lists/misc'] = ['dish soap']

which would give us:

>>> t['shopping lists'].draw()
shopping lists/
 +-- misc/
 | +-- pyData.pkl
 +-- food/
 | +-- pyData.pkl
 +-- clothes/
 +-- pyData.pkl

and we could always get them back easily enough:

>>> t.data['shopping lists/food']
['milk', 'ham', 'eggs', 'steak']

Trees as subselections

But since Trees can access datasets inside them, we could work more directly
with our shopping lists by using the ‘shopping lists’ Tree

>>> lets_go_shopping = t['shopping lists']
>>> lets_go_shopping.data
 <Data(['clothes', 'food', 'misc'])>

and now selecting is a bit less verbose:

>>> lets_go_shopping['food']
['milk', 'ham', 'eggs', 'steak']

Aggregating datasets with Views and Bundles

Just as Treants and Trees have the Data limb
for storing and retrieving datasets in their filesystem trees, the
View [http://datreant.readthedocs.io/en/master/api_filesystem.html#datreant.core.View] and Bundle [http://datreant.readthedocs.io/en/master/api_bundle.html#datreant.core.Bundle] objects also
have the AggData limb for accessing these
datasets in aggregate.

Given a directory with four Treants

> ls
elm/ maple/ oak/ sequoia/

we’ll gather these up in a Bundle

>>> import datreant.core as dtr
>>> import glob
>>> b = dtr.Bundle(glob.glob('*'))
>>> b
<Bundle([<Treant: 'sequoia'>, <Treant: 'maple'>, <Treant: 'oak'>, <Treant: 'elm'>])>

and then attach the AggData limb to only this
Bundle instance with:

>>> import datreant.data
>>> b.attach('data')

Note

Attaching a limb like AggData to a
Bundle or View with the attach() [http://datreant.readthedocs.io/en/master/api_bundle.html#datreant.core.Bundle.attach] method
will attach the required limb to each member instance. In this case,
each member gets a Data limb.

and so we can now do:

>>> b.data
<AggData([])>

This tells us that there are no datasets with the same key within every member
of the Bundle. So, let’s make something that does. Let’s build a “dataset” that
gives us a sinusoid based on a characteristic of each Treant in the Bundle:

>>> import numpy as np
>>> b.categories['frequency'] = [1, 2, 3, 4]
>>> for member in b:
... member.data['sinusoid/array'] = np.sin(
... member.categories['frequency'] * np.linspace(0, 8*np.pi,
... num=200))

So now if we do:

>>> b.data
<AggData(['sinusoid/array'])>

we see we now have a dataset name in common among all members. If we recall
it

>>> sines = b.data['sinusoid/array']
>>> type(sines)
dict

we get back a dictionary with the full path to each member as keys:

>>> sines.keys()
['/home/bob/research/arborea/sequoia/',
 '/home/bob/research/arborea/oak/',
 '/home/bob/research/arborea/elm/',
 '/home/bob/research/arborea/maple/']

and the values are the :numpy arrays we stored for each member. If we’d
rather get back a dictionary with names instead of paths, we could do that
with the retrieve() method:

>>> b.data.retrieve('sinusoid/array', by='name').keys()
['sequoia', 'oak', 'maple', 'elm']

Getting uuids as the keys is also possible, and is often useful since these
will be unique among Treants, while names (and in some cases, paths) are
generally not.

Aggregating datasets not represented among all members

We can still aggregate over datasets even if their keys are not present among
all members. We can see what keys are available among at least one member in
the Bundle with:

>>> b.data.any
['a grocery list',
'a/better/grocery/list',
'shopping lists/clothes',
'shopping lists/food',
'shopping lists/misc',
'sinusoid/array',
'something enormous',
'something wicked']

and we see the datasets we stored using the single Treant earlier. If we
recall one of these, we get an aggregation

>>> b.data['shopping lists/clothes']
{'/home/bob/research/arborea/sequoia/': ['shirts', 'pants', 'shoes']}

with only the datasets present for that key. Since it’s only the one Treant
that has a dataset with this name, we get a dictionary with one key-value pair.

MultiIndex aggregation for pandas objects

numpy arrays or pickled datasets are always retrieved in aggregate as
dictionaries, since this is the simplest way of aggregating these objects while
retaining the ability to identify datasets from individual members. Aggregation
is most useful, however, for pandas [http://pandas.pydata.org/pandas-docs/stable/index.html#module-pandas] objects, since for these we can
naturally build versions of the same data structure with an additional index
for data membership.

We’ll make a pandas.Series [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.html#pandas.Series] version of the same dataset we stored
before:

>>> import pandas as pd
>>> for member in b:
... member.data['sinusoid/series'] = pd.Series(member.data['sinusoid/array'])

So now when we retrieve this aggregated dataset by name, we get a series with
an outermost index of member names:

>>> sines = b.data.retrieve('sinusoid/series', by='name')
>>> sines.groupby(level=0).head()
sequoia 0 0.000000
 1 0.125960
 2 0.249913
 3 0.369885
 4 0.483966
oak 0 0.000000
 1 0.369885
 2 0.687304
 3 0.907232
 4 0.998474
maple 0 0.000000
 1 0.249913
 2 0.483966
 3 0.687304
 4 0.847024
elm 0 0.000000
 1 0.483966
 2 0.847024
 3 0.998474
 4 0.900479
dtype: float64

So we can immediately use this for aggregated analysis, or perhaps just pretty
plots:

>>> for name, group in sines.groupby(level=0):
... group.reset_index(level=0, drop=True).plot(legend=True, label=name)

[image: _images/sines.png]

Subselection with Views

Just as we can subselect datasets with Trees, we
can use View [http://datreant.readthedocs.io/en/master/api_filesystem.html#datreant.core.View] objects to work with subselections in
aggregate. Using our Bundle from above, we can construct a View:

>>> sinusoids = dtr.View(b).trees['sinusoid']
>>> sinusoids
<View([<Tree: 'sequoia/sinusoid/'>, <Tree: 'maple/sinusoid/'>, <Tree: 'oak/sinusoid/'>, <Tree: 'elm/sinusoid/'>])>

And just like a Tree [http://datreant.readthedocs.io/en/master/api_filesystem.html#datreant.core.Tree] can access datasets with the
Data limb in the same way a
Treant [http://datreant.readthedocs.io/en/master/api_treants.html#datreant.core.Treant] can, a View [http://datreant.readthedocs.io/en/master/api_filesystem.html#datreant.core.View] can access
datasets in aggregate in the same way as a Bundle [http://datreant.readthedocs.io/en/master/api_bundle.html#datreant.core.Bundle]:

>>> sinusoids.attach('data')
>>> sinusoids.data
<AggData(['array', 'series'])>

These are the datasets common to all the Trees in this View. We can retrieve
an aggregation as before:

>>> sinusoids.data['series'].groupby(level=0).head()
/home/bob/research/arborea/sequoia/sinusoid/ 0 0.000000
 1 0.031569
 2 0.063106
 3 0.094580
 4 0.125960
/home/bob/research/arborea/maple/sinusoid/ 0 0.000000
 1 0.063106
 2 0.125960
 3 0.188312
 4 0.249913
/home/bob/research/arborea/oak/sinusoid/ 0 0.000000
 1 0.094580
 2 0.188312
 3 0.280355
 4 0.369885
/home/bob/research/arborea/elm/sinusoid/ 0 0.000000
 1 0.125960
 2 0.249913
 3 0.369885
 4 0.483966
dtype: float64

Note

For aggregations from a View, it is not possible to aggregate by
uuid because Trees do not have them. Also, in many cases, as here,
aggregating by name will not give unique keys. When the aggregation
keys are not unique, a KeyError [https://docs.python.org/3/library/exceptions.html#KeyError] is raised.

API reference: AggData

See the AggData API reference for more details.

API Reference

This is an overview of the datreant.data API components.

	Individual datasets
	Data

	Aggregated data
	AggData

Individual datasets

These are the API components of datreant.data for storing and retrieving
datasets from individual Treants and Trees.

Data

The class datreant.data.limbs.Data is the interface used by Treants to
access their stored datasets.

	
class datreant.data.limbs.Data(tree)

	Interface to stored data.

	
add(handle, *args, **kwargs)

	Store data in Treant.

A data instance can be a pandas object (Series, DataFrame, Panel),
a numpy array, or a pickleable python object. If the dataset doesn’t
exist, it is added. If a dataset already exists for the given handle,
it is replaced.

	Arguments

	
	handle

	name given to data; needed for retrieval

	data

	data structure to store

	
append(handle, *args, **kwargs)

	Append rows to an existing dataset.

The object must be of the same pandas class (Series, DataFrame, Panel)
as the existing dataset, and it must have exactly the same columns
(names included).

	Arguments

	
	handle

	name of data to append to

	data

	data to append

	
keys()

	List available datasets.

	Returns

	
	handles

	list of handles to available datasets

	
remove(handle, **kwargs)

	Remove a dataset, or some subset of a dataset.

Note: in the case the whole dataset is removed, the directory
containing the dataset file (Data.h5) will NOT be removed if it
still contains file(s) after the removal of the dataset file.

For pandas objects (Series, DataFrame, or Panel) subsets of the whole
dataset can be removed using keywords such as start and stop for
ranges of rows, and columns for selected columns.

	Arguments

	
	handle

	name of dataset to delete

	Keywords

	
	where

	conditions for what rows/columns to remove

	start

	row number to start selection

	stop

	row number to stop selection

	columns

	columns to remove

	
retrieve(handle, *args, **kwargs)

	Retrieve stored data.

The stored data structure is read from disk and returned.

If dataset doesn’t exist, None is returned.

For pandas objects (Series, DataFrame, or Panel) subsets of the whole
dataset can be returned using keywords such as start and stop for
ranges of rows, and columns for selected columns.

Also for pandas objects, the where keyword takes a string as input
and can be used to filter out rows and columns without loading the full
object into memory. For example, given a DataFrame with handle ‘mydata’
with columns (A, B, C, D), one could return all rows for columns A and
C for which column D is greater than .3 with:

retrieve('mydata', where='columns=[A,C] & D > .3')

Or, if we wanted all rows with index = 3 (there could be more than
one):

retrieve('mydata', where='index = 3')

See pandas.HDFStore.select() [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.HDFStore.select.html#pandas.HDFStore.select] for more information.

	Arguments

	
	handle

	name of data to retrieve

	Keywords

	
	where

	conditions for what rows/columns to return

	start

	row number to start selection

	stop

	row number to stop selection

	columns

	list of columns to return; all columns returned by default

	iterator

	if True, return an iterator [False]

	chunksize

	number of rows to include in iteration; implies
iterator=True

	Returns

	
	data

	stored data; None if nonexistent

Aggregated data

These are the API components of datreant.data for working with datasets
from multiple Treants at once, and treating them in aggregate.

AggData

The class datreant.data.agglimbs.AggData is the interface used by
Bundles and Views to access their members’ datasets in aggregate.

	
class datreant.data.agglimbs.AggData(collection)

	Manipulators for collection data.

	
keys(scope='all')

	List available datasets.

	Parameters

	scope ({'all', 'any'}) – Keys to list. ‘all’ returns only handles that are present in all
members. ‘any’ returns a list of all handles present in at least
one member.

	Returns

	handles – list of handles to available datasets

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
retrieve(handle, by='path', **kwargs)

	Retrieve aggregated dataset from all members.

This is a convenience method. The stored data structure for each member
is read from disk and aggregated. The aggregation scheme is dependent
on the form of the data structures pulled from each member:

	pandas DataFrames or Series

	the structures are appended together, with a new level added
to the index giving the member (see by) each set of rows
came from

	pandas Panel or Panel4D, numpy arrays, pickled python objects

	the structures are returned as a dictionary, with keys giving
the member (see by) and each value giving the corresponding
data structure

This method tries to do smart things with the data it reads from each
member. In particular:

	members for which there is no data with the given handle are
skipped

	the lowest-common-denominator data structure is output; this
means that if all data structures read are pandas DataFrames,
then a multi-index DataFrame is returned; if some structures are
pandas DataFrames, while some are anything else, a dictionary is
returned

	Arguments

	
	handle

	name of data to retrieve

	Keywords

	
	by

	top-level index of output data structure; ‘path’ uses member
path, ‘name’ uses member names, ‘uuid’ uses member uuids; if
names are not unique, it is better to go with ‘path’ or ‘uuid’
[‘path’]

See datreant.data.limbs.Data.retrieve() for more information on
keyword usage.

	Keywords for pandas data structures

	
	where

	conditions for what rows/columns to return

	start

	row number to start selection

	stop

	row number to stop selection

	columns

	list of columns to return; all columns returned by default

	iterator

	if True, return an iterator [False]

	chunksize

	number of rows to include in iteration; implies
iterator=True

	Returns

	
	data

	aggregated data structure

Index

 A
 | D
 | K
 | R

A

 	
 	add() (datreant.data.limbs.Data method)

 	
 	AggData (class in datreant.data.agglimbs)

 	append() (datreant.data.limbs.Data method)

D

 	
 	Data (class in datreant.data.limbs)

K

 	
 	keys() (datreant.data.agglimbs.AggData method)

 	(datreant.data.limbs.Data method)

R

 	
 	remove() (datreant.data.limbs.Data method)

 	
 	retrieve() (datreant.data.agglimbs.AggData method)

 	(datreant.data.limbs.Data method)

Storing arbitrary datasets

Treant state files are mainly built to store metadata, but what about storing
(potentially large and time consuming to produce) datasets? Using our Treant
sprout as the example here, say we have generated a numpy [http://www.numpy.org/] array of dimension (10^6, 3) that we wish to have
easy access to later

>>> a.shape
(1000000, 3)

We can store this easily

>>> t.data.add('something_wicked', a)
>>> t.data
<Data(['something_wicked'])>

and recall it

>>> t.data['something_wicked'].shape
(1000000, 3)

Looking at the contents of the directory sprout, we see it has a new
subdirectory corresponding to the name of our stored dataset

> # shell
> ls sprout
something_wicked Treant.2b4b5800-48a7-4814-ba6d-1e631a09a199.h5

which has its own contents

> ls sprout/something_wicked
npData.h5

This is the data we stored, serialized to disk in the efficient HDF5 [http://www.hdfgroup.org/HDF5/] data format. Treants will also
store pandas [http://pandas.pydata.org/] objects using this format.
For other data structures, the Treant will pickle them if it can. The
datreant.data.limbs.Data interface used here is built to make
storage of ~90% of data structures one works with as easy as possible.

Datasets can be nested however you like. For example, say we had several
pandas DataFrames each giving a table of observations for a different subject
from the study the Treant corresponds to. We could just as well make it clear
to ourselves that these are similar datasets by grouping them together

>>> t.data.add('subjects/leafy', df1)
>>> t.data.add('subjects/barkley', df2)
>>> # we can also use setitem syntax
>>> t.data['cations/twiggy'] = df3
>>> t.data
<Data(['subjects/leafy', 'subjects/barkley', subjects/twiggy',
 'something_wicked'])>

and their locations in the filesystem reflect this structure.

Minimal blobs

The datreant.data.limbs.Data interface takes advantage of the fact that
Treants are directory trees, giving individual datasets their own place in the
filesystem instead of shoving them into a single file on disk. This is by
design, as it generally means better performance since this means less waiting
for file locks to release from other instances of the same Treant from other
Python sessions. Also, it gives a space to put other files related to the
dataset itself, such as figures produced from it.

You can get the location on disk of a dataset with

>>> t.data.locate('subjects/barkley')
'/home/bob/sprout/subjects/barkley'

which is particularly useful for outputting figures.

Another advantage of organizing Treants at the filesystem level is that
datasets can be handled at the filesystem level. Removing a dataset with a

> # shell
> rm -r sprout/subjects/leafy

is immediately reflected by the Treant

>>> t.data
<Data(['subjects/barkley', 'subjects/twiggy', 'something_wicked'])>

Datasets can likewise be moved within the Treant’s directory tree and they
will still be found, with names matching their location relative to the state
file.

Reference: Data

The class datreant.data.limbs.Data is the interface used
by Treants to access their stored datasets. It is not intended to be used
on its own, but is shown here to give a detailed view of its methods.

 _static/comment-bright.png

_images/sines.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/file.png

_static/minus.png

nav.xhtml

 Table of Contents

 		
 datreant.data: convenient data storage and retrieval for Treants

 		
 Installing datreant.data

 		
 Dependencies

 		
 Installing from source

 		
 Storing and retrieving datasets within Treants

 		
 Storing and retrieving numpy arrays

 		
 Storing and retrieving pandas objects

 		
 Appending to existing data

 		
 Retrieving subselections

 		
 Retrieving from a query

 		
 Bonus: storing anything pickleable

 		
 Deleting datasets

 		
 API reference: Data

 		
 Using Trees to subselect datasets

 		
 Nesting within a tree

 		
 Trees as subselections

 		
 Aggregating datasets with Views and Bundles

 		
 Aggregating datasets not represented among all members

 		
 MultiIndex aggregation for pandas objects

 		
 Subselection with Views

 		
 API reference: AggData

 		
 API Reference

 		
 Individual datasets

 		
 Data

 		
 Aggregated data

 		
 AggData

_static/up-pressed.png

_static/up.png

_static/plus.png

_static/images/sines.png

